Considerations in binding diblock copolymers on hydrophilic alginate beads for providing an immunoprotective membrane
نویسندگان
چکیده
Alginate-based microcapsules are being proposed for treatment of many types of diseases. A major obstacle however in the successes is that these capsules are having large lab-to-lab variations. To make the process more reproducible, we propose to cover the surface of alginate capsules with diblock polymers that can form polymer brushes. In the present study, we describe the stepwise considerations for successful application of diblock copolymer of polyethylene glycol (PEG) and poly-L-lysine (PLL) on the surface of alginate beads. Special procedures had to be designed as alginate beads are hydrophilic and most protocols are designed for hydrophobic biomaterials. The successful attachment of diblock copolymer and the presence of PEG blocks on the surface of the capsules were studied by fluorescence microscopy. Longer time periods, that is, 30-60 min, are required to achieve saturation of the surface. The block lengths influenced the strength of the capsules. Shorter PLL blocks resulted in less stable capsules. Adequate permeability of the capsules was achieved with poly(ethylene glycol)-block-poly(L-lysine hydrochloride) (PEG454-b-PLL100) diblock copolymers. The capsules were a barrier for immunoglobulin G. The PEG454-b-PLL100 capsules have similar mechanical properties as PLL capsules. Minor immune activation of nuclear factor κB in THP-1 monocytes was observed with both PLL and PEG454-b-PLL100 capsules prepared from purified alginate. Our results show that we can successfully apply block copolymers on the surface of hydrophilic alginate beads without interfering with the physicochemical properties.
منابع مشابه
Reduction of the Inflammatory Responses against Alginate-Poly-L-Lysine Microcapsules by Anti-Biofouling Surfaces of PEG-b-PLL Diblock Copolymers
Large-scale application of alginate-poly-L-lysine (alginate-PLL) capsules used for microencapsulation of living cells is hampered by varying degrees of success, caused by tissue responses against the capsules in the host. A major cause is proinflammatory PLL which is applied at the surface to provide semipermeable properties and immunoprotection. In this study, we investigated whether applicati...
متن کاملFormulation and Evaluation of Floating Drug Delivery System of Famotidine
A multiple unit oral floating drug delivery system of famotidine was developed to prolong gastric residence time, target stomach mucosa and increase drug bioavailability. Drug and polymer compatibility was studied by subjecting physical mixtures of drug and polymers to differential scanning calorimetry. Cod liver oil entrapped calcium alginate beads containing famotidine, capable of floating in...
متن کاملMicrofluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability.
We describe a versatile technique for fabricating monodisperse polymersomes with biocompatible and biodegradable diblock copolymers for efficient encapsulation of actives. We use double emulsion as a template for the assembly of amphiphilic diblock copolymers into vesicle structures. These polymersomes can be used to encapsulate small hydrophilic solutes. When triggered by an osmotic shock, the...
متن کاملSelf-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: self-consistent field theory simulations.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micel...
متن کاملComputer simulation of architectural and molecular weight effects on the assembly of amphiphilic linear-dendritic block copolymers in solution.
Langevin dynamics simulations are performed on linear-dendritic diblock copolymers containing bead-spring, freely jointed chains composed of hydrophobic linear monomers and hydrophilic dendritic monomers. The critical micelle concentration (CMC), micelle size distribution, and shape are examined as a function of dendron generation and architecture. For diblock copolymers with a linear block of ...
متن کامل